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Six of the most verified correlations for boiling heat transfer were compared to data for horizon-
tal and vertical tubes and annuli. The correlations evaluated were: Chen (1966), Shah (1982),
Gungor and Winterton (1987), Liu and Winterton (1991), Kandlikar (1990), and Steiner and
Taborek (1992). The database used to evaluate these correlations included 30 fluids, consisting
of water, refrigerants, cryogens, and organic and inorganic chemicals. The data cover reduced
pressures from 0.005 to 0.783, mass flux from 28 to 11071 kg/m2s, vapor quality from 0 to 0.95,
and boiling numbers from 0.000026 to 0.00742. The correlations of Shah (1982) and Gungor
and Winterton (1987) gave the best agreement with data with a mean deviation of about 17.5%,
with only a couple of data sets showing large deviations. This paper presents and discusses the
results of this study. Included are tables giving the range of dimensional and nondimensional
parameters covered by each experimental study. 

INTRODUCTION
Hundreds of correlations were proposed for the calculation of heat transfer during the boiling

of saturated liquids inside tubes and annuli. Most of them were compared to only a limited
amount of data. However, some of them were shown to agree with a wide range of data with
many fluids and are therefore considered general correlations. It is desirable to know their com-
parative accuracy and limitations so that the most reliable correlations may be used for practical
calculations. This paper reports the results of such a study in which six of the best known general
correlations were compared to a very wide range of data for 30 fluids. Included are tables giving
the range of dimensional and nondimensional parameters covered by each experimental study. 

AVAILABLE CORRELATIONS 
A very large number of correlations were published. Most of them had very little verification.

Only the ones that had extensive verification with a wide range of fluids and found wide accep-
tance are mentioned here.

The first general correlation was published by Chen (1966). It was based entirely on data for
vertical channels. The correlation is

 (1)

It showed excellent agreement with the data analyzed by Chen. However, many later
researchers compared it to large databases and reported that its agreement was satisfactory with
neither horizontal nor vertical channels. Examples of such studies are Kandlikar (1990), Gungor
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and Winterton (1986, 1987), Liu and Winterton (1991), and Steiner and Taborek (1992).   Hun-
dreds of correlations in the form of Equation 1 were proposed, most based only on one data set.

 The present author (Shah 1976, 1982) presented a correlation with the functional form

 . (2)

The Froude number (FrL) accounts for stratification in horizontal channels; it is not used for
vertical channels. This was the first correlation applicable to both horizontal and vertical tubes.
It was tested with large databases with mostly satisfactory results by many researchers, such as
Kandlikar (1990), Gungor and Winterton (1986, 1987), and Liu and Winterton (1991).

Kandlikar (1990) gives a correlation applicable to both horizontal and vertical channels. It
uses the same correlating parameters as the Shah correlation but also has a fluid specific multi-
plier for nucleate boiling. Values of this multiplier were given for only ten fluids; hence, it is
applicable to only those ten fluids.

Gungor and Winterton (1986) presented a correlation similar to Equation 1 but incorporated
the Froude number for horizontal channels in the same way as in the Shah correlation. Liu and
Winterton (1991) also presented a similar correlation and showed it to be more accurate than the
Gungor and Winterton (1986) correlation.

Gungor and Winterton (1987) presented a correlation similar to the Shah correlation and
showed that it agreed with a wide range of data.

Steiner and Taborek (1992) give a correlation that is based on a large and varied database for
vertical channels. It has the form

(3)

CORRELATIONS TESTED
The following correlations were tested:

• Chen (1966) with pool boiling component calculated by the Cooper correlation (1984)
• Steiner and Taborek (1992)
• Shah (1982)
• Kandlikar (1990)
• Liu and Winterton (1991)
• Gungor and Winterton (1987)

The reason for using the Cooper pool boiling correlation with the Chen correlation is that the
Cooper correlation was verified with an extremely wide range of data, while the pool boiling
correlation originally used by Chen had very little verification. It was felt that this change will
improve the accuracy of the Chen correlation. Hence, the Chen correlation incorporating this
change is called the Chen-Cooper correlation. Note that the Cooper correlation was used with
roughness at 1 μm and without the factor 1.7 for copper tubes.

The Gungor and Winterton (1986) correlation was not tested as that of Liu and Winterton
(1991) was tested in the present study, and they had shown that their correlation gave better
agreement with the data. 

All of the above correlations require the calculation of a single-phase liquid heat transfer
coefficient. For use with the Steiner and Taborek correlation, the formula of Pethukov and
Krillov (1958) was used in accordance with their recommendation. For all other tested correla-
tions, liquid convective heat transfer was calculated by the McAdams (1954) equation:

hTP hLO⁄ f Co, Bo, FrL( )=

hTP FsthLT( )
3

hpb
3

+( )
1 3⁄
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Ogata and Sato (1974) compared their nonboiling helium data with Equation 4 and found that
the constant should be changed to 0.015 to fit their data. Therefore, in analyzing their data, the
constant in Equation 4 was changed to 0.015. For application to annuli, D was replaced by the
equivalent diameter Dhp, defined as four times the flow area divided by the heated perimeter. 

DATA ANALYZED
Efforts were made to collect data for as many fluids as possible, covering a wide range of

parameters. Only single-component fluids and azeotropic mixtures were considered. For refrig-
erants, only those data were considered for which oil content was stated to be zero or negligible.

The salient features and range of data analyzed are listed in Tables 1 and 2. These include 30
fluids, namely, water, R-11, R-12, R-22, R-32, R-113, R-114, R-123, R-134a, R-152a, R-502,
ammonia, propane, isobutane, carbon tetrachloride, isopropyl alcohol, ethanol, methanol,
n-butanol, cyclohexane, benzene, heptane, ethylene glycol, pentane, nitrogen, argon, neon,
hydrogen, nitrogen, and helium. The results for ethylene glycol are from Liu and Winterton
(1991). Data for carbon dioxide (CO2) from several sources were also analyzed but none of
them agreed with any of the tested correlations. It was concluded that CO2 is a special fluid
requiring separate treatment; hence, CO2 data were not included in Tables 1 and 2. This is fur-
ther discussed later in the paper.

Most of the data analyzed are for local heat transfer coefficients. Some researchers reported
only the average heat transfer coefficients and heat flux over the tube length as indicated in
Tables 1 and 2. Comparison with such data was done by using the mean quality and the mean
heat flux in the evaluated correlations. 

The data of Ogata and Sato (1974) for helium showed strong hysterisis. The mean of the heat
transfer coefficients for ascending and descending heat fluxes was used for comparison with all
correlations.

FLUID PROPERTY DATA
The main source of fluid property data was the University of Ottawa Code UO0694. It did not

give data for all fluids. For analyzing the data of Talty (1953), fluid properties used were those
listed by him. For helium, properties used were from McCarty (1972). Properties of isobutane,
propane, ammonia, R-32, R-502, hydrogen, argon, and neon were from the ASHRAE Handbook
(ASHRAE 1997). Properties of other fluids (carbon tetrachloride, n-butanol) were from Beaton
and Hewitt (1989).

RESULTS OF DATA ANALYSIS
The mean and average deviations of data from correlations are listed in Tables 1 and 2 for

horizontal and vertical channels, respectively. The deviation δ for a data point is defined as

(5)

The average deviation δavg of a data set is defined as

 , (6)

where N is the number of data points in the data sets. The mean deviation  δmean of a data set is
defined as

 (7)

hLTD

k
------------- 0.023

GD

μ
---------
⎝ ⎠
⎛ ⎞ 0.8Pr

0.4
=

δ
hpred hmeas–( )

hmeas

-------------------------------------  .=

δavg Σ δ( ) N⁄( )=

δmean Abs∑ δ( )⋅ N⁄( ) .=
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Table 3 gives the combined results for horizontal and vertical channels. In this table, the devi-
ations for each correlation are given in two ways: 

1. Giving equal weight to each data point.

2. Giving equal weight to each data set.

The second way probably gives a better indication of the reliability of the correlation.

DISCUSSION OF RESULTS

Accuracy of Correlations

It is apparent from the results in Tables 1–3 that the correlations of Shah (1982) and Gungor
and Winterton (1987) are the most reliable, with a main deviation of about 17.5% for all 1960
data points. The Shah correlation is more consistent, as only 5 of the 69 data sets have a mean
deviation of more than 30%, while the Gungor and Winterton correlation has 9 data sets exceed-
ing 30% deviation.

 These two correlations show reasonable agreement with almost all data sets. One notable
exception is the data of Mohr and Runge (1977) for neon. These are much higher than all the
correlations tested here. No other analyzable data for neon could be found. However, Pappel and
Hendricks (1978) gave a correlation of their subcooled data for nitrogen and neon for subcooling
starting from 2°C. The predictions of this correlation at 1°C subcooled neon agree satisfactorily
with the Shah correlation and at 2°C subcooling are lower than the Shah correlation. This sug-
gests that the Mohr and Runge data may be unusually high.

The other notable exception is the data of Steiner and Schlunder (1977) for nitrogen; these are
much higher than the Shah correlation. However, nitrogen data from four other sources (Klimenko
and Sudarchikov 1983; Klimenko et al. 1987; Klein 1976; Pappel and Hendricks 1978) agree well
with this correlation. The Steiner and Schlunder data are also much higher than the Gungor and
Winterton and Liu and Winterton correlations. Hence, these data are apparently unique.

The Liu and Winterton correlation’s performance is erratic. While it agrees well with many
data sets, it also shows large deviations with many data sets, such as the data of Muller et al.
(1983) for argon, the cyclohexane data of Talty (1953), and the data of Piret and Isbin (1954) for
water, CCl4, n-butanol, and isopropanol.

Table 3. Summary of Results for Both Horizontal and Vertical Channels

Correlation of
Mean Dev. %

a b

Shah 17.7 17.3

Gungor and Winterton 17.6 18.6

Chen-Cooper 23.2 22.4

Liu and Winterton 25.5 37.5

Steiner and Taborek 30.0 36.5

Kandlikar 32.3 55.0

a. Giving equal weight to each data point.
b. Giving equal weight to each data set.
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The Steiner and Taborek correlation did not perform well in predicting horizontal tube data.
Indeed, these authors recommended it only for vertical channels. Even with vertical channels, it
shows large deviations with some data sets. 

The Chen and Cooper correlation works fairly well with both horizontal and vertical tubes, but its
accuracy is significantly less than the Shah and the Gungor and Winterton correlations.

The Kandlikar correlation could be compared with data for only those fluids for which he
gave the nucleate boiling multiplying factors. Even among those fluids, it performed poorly with
data for R-22, nitrogen, and neon. Figures 1 and 2 show the comparison of some data for R-22
and nitrogen with the correlations of Shah and Kandlikar. The Shah correlation is seen to be in
good agreement with data, while the Kandlikar correlation predicts too high. These figures are
typical of the results for these fluids.

Figure 1. Comparison of some data of Mathur (1976) for R-22 with the correlations of
Shah and Kandlikar; p = 4.83 bar, G = 146 kg/m2s, q = 20 kW/m2.

Figure 2. Comparison of some data of Klimenko and Sudarchikov (1983) for nitrogen with
the correlations of Shah and Kandlikar; p = 6.9 bar, G = 310 kg/m2s, q = 17.5 kW/m2.
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Tube Material
The data analyzed include many types of tube materials, including copper, stainless steel,

monel, brass, and nickel-coated glass. All the test sections were made from commercial grade
tubes except the nickel-coated glass used by Gouse and Coumou (1965). There is no indication
that the accuracy of the correlations is affected by the type of material.

Tube Surface Microstructure
It is generally agreed that the intensity of nucleate boiling depends on the shape and popula-

tion densities of cavities in the surface. This was demonstrated by pool boiling tests on surfaces
with artificially prepared cavities. Information on cavity sizes and their population density is not
available for any of the test data evaluated here. The fact that almost all data sets analyzed are in
fair agreement with the Shah correlation (which does not have any factor for surface microstruc-
ture) indicates that the microstructures of most commercial tubes are normally similar. It may be
noted that the most successful general correlations for pool boiling (those of Stephen and Abdel-
salam [1980] and Cooper [1984]) do not have any factor for surface microstructure. It is statisti-
cally probable that some commercial tubes may have a microstructure very favorable to nucleate
boiling. This may be the explanation for the data of Steiner and Schlunder and Mohr and Runge
being much higher than the predictions of almost all tested correlations. However, it will be
inadvisable to base designs on such unusually high data.

The designer of a heat exchanger does not have any way of knowing the microstructure of
tubes that will be used during fabrication. It is therefore fortunate that heat transfer coefficients
can be predicted with a high probability of accuracy without the knowledge of microstructure.

Heating Mode 
 The data analyzed include electric heating, heating by condensing steam, and heating by hot

liquids. Data for all heating modes are satisfactorily correlated by the Shah and the Gungor and
Winterton correlations.

Type of Fluid
The Shah and the Gungor and Winterton correlations show good agreement with 29 of the 30

fluids included in Tables 1 and 2. The only available single data set for neon does not agree with
any of the tested correlations but, as was pointed out earlier, the measurements of Pappel and
Hendricks (1978) appear to be in agreement with the Shah correlation.

CO2 data from several sources were analyzed but none of the correlations tested here were
found to agree with them. Among such data are those of Bredsen et al. (1997), Yoon et al. (2004),
and Knudsen and Jensen (1997). These authors also compared their data with well-known general
correlations with poor results. Thome and Hejal (2004) compared CO2 data with their correlation
that was based on data for several refrigerants but found poor agreement. They concluded that
carbon dioxide is a unique fluid and developed a correlation specifically for CO2. However, Park
and Hrnjak (2005) found that it did not agree with their data.

Thus, the Shah and the Gungor and Winterton correlations appear to be suitable for all New-
tonian, nonmetallic fluids except CO2. 

Annuli
The present analysis included only 94 data points from two sources. The present author (Shah

1982) compared the Shah correlation with 736 data points from five sources, covering a wide
range of parameters. The mean deviation for all data was 17.1%. Hence, the Shah correlation is
well verified for annuli.
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SUMMARY AND CONCLUSION

1. Six of the best known general correlations were tested with data for 30 fluids, including
water, refrigerants, organics, and cryogens boiling in horizontal and vertical tubes and annuli.
The data covered a very wide range of parameters.

2. The correlations of Shah (1982) and Gungor and Winterton (1987) gave good agreement
with data, with the mean deviation around 17.5%. The Shah correlation is more consistent.
The range of data satisfactorily predicted is given in Table 4. The other four correlations had
mean deviations from 22% to 55%.

3. The results indicate that the Shah and the Gungor and Winterton correlations can be used
with confidence for all Newtonian nonmetallic fluids (except CO2).

NOMENCLATURE
Bo = boiling number = q/(G hfg)

D = ID of tube

Dhp = equivalent diameter of annulus 

Co = convection number, 

Fchen = convective enhancement factor in Chen 
correlation

Fst = convective enhancement factor in Steiner 
and Taborek correlation

FrL = Froude number, 

G = total mass flux (liquid plus vapor)

g = acceleration due to gravity

hfg = latent heat of vaporization

hLO = heat transfer coefficient assuming liquid 
phase  flowing alone

hLT = heat transfer coefficient assuming all 
mass flowing as liquid

hmeas = measured heat transfer coefficient

hpb = pool boiling heat transfer coefficient

hpred = predicted heat transfer coefficient

hTP = two-phase heat transfer coefficient

k = thermal conductivity of liquid

Pr = Prandtl number of liquid

pr = reduced pressure

q = heat flux

S = nucleate boiling suppression factor in 
Chen correlation

μ = viscosity of liquid

ρL = density of liquid

ρg = density of vapor

Table 4. Complete Range of Data Satisfactorily Predicted 
by the Correlation of Shah (1982)

Parameter Range of Data

Fluids Water, R-11, R-12, R-22, R-32, R-113, R-114, R-123, R-134a, R-152a, 
R-502, ammonia, propane, isobutane, carbon tetrachloride, isopropyl 
alcohol, ethanol, methanol, n-butanol, cyclohexane, benzene, heptane, 

pentane, ethylene glycol, argon, hydrogen, nitrogen, and helium

Test channels Tubes and annuli (heated on inside, outside, and bilateral); 
horizontal and vertical

Heating method Electric, condensing steam, liquid

Diameter, mm 1.1 to 27.1

Reduced pressure 0.0053 to 0.78

G, kg/m2s 10 to 11,071

q, kW/m2 0.2 to 1,250

x, percent 0 to 95

Bo × 104 0.22 to 74.2

1 x 1–⁄( )
0.8

ρg ρL⁄( )0.5

G
2

ρL

2
gD( )⁄
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